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The efforts described herein were performed under contract 
to the Analysis and Simulation Branch (SUYA) of the Air Force 
Cambridge Research Laboratories (AFCRL), Hanscom Air 
Force Base, Bedford, Massachusetts. 

iii 

- ; .:■-..■.-.;.■-.■..;■"..: _...„.._.._.-_.■          -.-  :-„.:-, ■. :......   . .,     ......._■   ..—._.■....,....„._, „,_^- .j_^_ ■_, 



TABLE OF CONTENTS 

Page 

K FOREWORD  iii 

TABLE OF CONTENTS  V 

1. INTRODUCTION  1 

1.1 THE AE-C SATELLITE  2 
1.2 THE MESA EXPERIMENT  2 

2. DIGITAL FILTERING ANALYSIS  3 

2.1 GENERAL DESCRD7TION  3 

2.1.1   Spectral Considerations  4 

2.1.1.1 Fourier analysis  4 
2.1.1.2 White noise and systematic noise  6 
2.1.1.3 Optimum filters  6 

2.2 APPLICATION TO MESA DATA  10 

2.2.1   Description of Sensed Accelerations  10 

2.2.1.1 Despun orbits  10 
2.2.1.2 Spinning orbits  19 

APPENDK A - THE LEAST SQUARES APPROXIMATION FOR NON- 
RECURSIVE DIGITAL FILTERS  26 

APPENDK B - DERIVATION OF SQUARE WINDOW TRANSFER 
FUNCTION  34 

ACKNOWLEDGEMENTS  36 

REFERENCES  37 

■■   



,..,,.   ...    I,..- —  :-. —« 

1.   INTRODUCTION 

The efforts described herein are part of a project to develop and implement a 
data processing software system for the management and analysis of data re- 
ceived from the AFCRL MESA (Miniature Electrostatic Accelerometer) 

experiment flown aboard the NASA Atmosphere E?:p'.jter (AE-C) satellite. 
To accomplish this task a dedicated computer system - Xerox Sigma-9 - is 
being utilized in a time-shared environment.   Telemetry data from the four- 
teen major experiments aboard AE are transmitted from remote stations; to 

NASA/GSFC, and these data are then stored on mass storage devices for use 

by experimenter's software.   Reduced and analyzed experiment data are later 

restored on mass storage devices for use by all other experimenters and 
theoretical analysts. 

The MESA Data Reduction System (DRS) which has been developed is capable 
of extracting raw telemetry data from the AE data base, editing and tempera- 
ture-correcting the telemetry data, extracting atmospheric drag values 

utilizing digital filtering techniques, and calculating atmospheric density and 
wind data.   In addition, the MESA DRS calculates Jacchia 71 model density 
values, lists and displays calculated parameters on printer plots and/or 

microfilm, and stores output data in files for on-line use by other experi- 

menters.   This system is presently being utilized in a production environment 
to produce reduced MESA density data on a timely basis.  In addition, present 

plans are to modify the DRS to be capable of processing MESA data from the 

AE-D and AE-E satellites to be launched later in 1975. 

This report will describe one segment of the MESA data reducticn system, 

namely the digital filtering techniques used to determine atmospheric drag 
information from the MESA sensor outputs. 
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1.1    THE AE-C SATELLITE 

The AE-C satellite is a sixteen (16) sided polyhedron, 53.5 inches in outside 

diameter, 45.0 inches high, weighing 1490 lbs., and containing 14 scientific 

experiments.   It was launched from Vandenberg Air Force Base, California, 

on 16 December 1973 at 0618 GMT by a Delta vehicle into an elliptic orbit with 

apogee at about 4000 km, perigee at 156 km, and an inclination of 68.4 degrees. 

The purpose of AE-C is to investigate the physical properties, dynamics and 

photochemical processes in the upper atmosphere by making closely coordi- 

nated measurements.   The spacecraft differs from the usual scientific satellite 

in that it contains an on-board propulsion system which permits variation of 

perigee and apogee altitudes; in the team approach taken by investigators to 

analyze and compare data; in the normal spacecraft and data-taking operations; 

and in the concommitant rapidity with which data must be forwarded, processed 

and analysed. 

Specifically, the AE-C mission objective is to study phenomena ir the atmos- 

phere at altitudes above 120 km.   This is to be accomplished in two orbital 

phases: elliptic orbit and circular orbit.   During the elliptic orbit phase (now 

completed) the spacecraft traveled in an eccentric elliptical orbit with a nominal 

apogee of 4000 km, and a perigee which was changed within the altitude range of 

130 km. to 160 km.   For the second phase, widch has just begun, the spacecnlt 

will be circui? ized at different altitudes, but initially between 220 km. and 

240 km.   In both phases the satellite's spin rate is variable, being either in the 

spin mode at mainly 4 rpm or in the de pun mode at 1 rpo (revolution per orbit). 

1.2     THE MESA EXPERIMENT 

The MESA (Miniature Electrostatic Accelerometer) experiment on AE-C was 

designed to determine neutral atmospheric density by measuring satellite 

deceleration caused by aerodynamic drag.   The MESA sensor consists of an 

electrostaticilly suspended proof mass which Is also electrostatically rebalanced 
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along a sensitive axis (i.e., the longitudinal axis of the cylindrical sensor) with 

a force equal to the applied acceleration. 

The output of the MESA is a digital pulse rate proportional to the sensed input 

acceleration.   Vehicle dynamics, the momentum wheel, propulsion system 

thrusting, and instrument motions provide i^put "noise" accelerations.   These 

noise accelerations are to be removed in the data analysis in order to retrieve 

the desired "signal" accelerations due to atmospheric drag. 

This report will describe the methods used to deter/ ine atmospheric drag values 

from the total sensor outputs. 

For a more detailed description of the AE-C satellite and the MESA experiment, 

see reference (2). 

2.   DIGITAL FILTERING ANALYSIS 

2.1    GENERAL DESCRIPTION 

The approach taken to extract the message signal accelerations from the total 

signal accelerations (that is, message signal plus noise) is provided by statis- 

tical communication theory.   We can describe the acceleration data measured 

by MESA by the equation 

d(t) = s(t) + n(t)  , 

where d(t) = the signal received (total sensed accelerations), 

s(t) = the message signal (atmospheric drag), 

n(t) = the noise signal. 

Our objective is to perform mathematical operations on d(t) in order to produce 

a new signal, s(t), which will approximate s(t) in some optimal fashion.   The 

optimality criterion will be defined for the specific problem at hand. 
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2.1.1     Spectral Considerations 

2.1.1.1      Fourier analysis 

Arbitrary periodic functions can be represented by an infinite series of sinus- 

oids of harmonically related frequencies.   The conditions under which it is 

possible to write the Fourier series for a periodic function f(t) are known as 

the Dirichlet conditions.   They require that in each period the function (a) have 

a finite number of discontinuities, (b) possess a finite number of maxima and 
minima, and (c) be absolutely convergent: 

f If(t)j dt<«t 

where T is the period of f(t).   If f(t) satisfies the Dirichlet conditions 
write 

, we can 

where 

and 

Since 

and 

f(t) = an + 0   X] (En COS nW0fc + bn sin auo^  » 
n=l 

a 
tf 0     T I       *W * J0 

2 rT 
an - T J     f<t) cos nwot dt 

/"T 
bn = T J     f<t> •to Wty *  • 

cos nwQt -|^e     u+e       °l 

, /" Jno)ftt      -jnwftt\ 
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we can also write 

« ■ £ °n 
jnw0t 

e 

n= 

where 

=»4/0 «w 
T        -jnat 

e dt  . 

Note that c   is complex and can be written as c   = ,c  i eJ    .   Plots of ic  i and 

6   versus n are known as the line or discrete spectra of f(t) in amplitude and 

phase, respectively.   Values of ic  i and 0  exist only for certain values of u>, 

namely the fundamental frequency u>0 and its harmonics. 

Now consider a non-periodic function, g(t).   The Fourier transform of g(t) is 

defined by 

Joo 

g(t) e"Jtot dt 

and exists if g(t) is absolutely convergent, i.e., 

£ |g(t)i dt<» . 

The inverse transform is given by 

• OS f 
g(t) - ^ J    G(jw) ejwt dco 

GOOJ) can be written as |G(ju>)! eJ 'W .   G(jtoJ) is known as the continuous amplitude 
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spectrum and dices) as the continuous phase spectrum for a nonrecurring g(t). 

Concerning continuous spectra, we may make the following statements: 

(a) The shape of the continuous amplitude and phase spectra for a nonrecur- 

ring g(t) are identical with the envelopes of the amplitude and phase line 

spectra for the same function recurring. 

(b) All frequencies are present in the continuous amplitude spectrum in the 

sense that G(ju>) is defined for all ü)(-°° < co< °°); the amplitude of any 

frequency component is vanishingly small, being G(jw) dcc/2ir. 

Thus we see that all signals [s(t)] of interest can be represented in the frequency 

domain by their Fourier representation. 

2.1.1.2      White noise and systematic noise 

Consider a random process x(t).   The autocorrelation function of the process is 

defined by 

R(trt2) = EWtj) x(t2)j   . 

The process is said to be wide sense stationary, if 

(a) E[|x(t)|2)<» for all t 

and 

(b) E[x(^) x(t2)] = R(t2 - t2)    for all ^ and t2  . 

That is, a process is wide sense stationary if its autocorrelation function is 

dependent not upon the two times at wMch the expectation of the process is con- 

sidered, but only upon the time difference, T, where T = t~ - t-.   Then, the 

autocorrelation function can be written as 

R(T) = E[x(t) x{t + T)j  . 

MH1MH 
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We define the power spectral density <p(w) of the random process x(t) to be the 

Fourier transform of the autocorrelation function R(T) of the process: 

<P(W) 
«'„0 

R(T)e-jWTdT 

It is often convenient to consider a random process x(t) with a constant spectral 

density N_: 

<P(üJ)=N0  , -» <(0 <M   . 

Such a process is called white noise.   It is not physically realizable since its 

mean squared value (power) is not finite: 

N„ r» 
R<0) = E[x*(t)) 

W0f 
2ff J do)-» . 

On the other hand, it often can be postulated where the actual process has an 

approximately constant spectral density over a frequency range much greater 

than the system bandwidth.   For example, the thermal motion of electrons in a 

conducting medium give rise to broadband noise which is usually treated as 

being white. 

Some parts of a system may also give rise to unwanted signals whose spectral 

density is confined to a relatively narrow section of the frequency spectrum. 

For example, periodic effects due to the earth's rotation will appear in certain 

types of ground observatory data.   This is known as systematic or narrowband 

noise. 

Narrowband noise can usually be removed from a system by the use of low pass 

or band pass filtering since in general the signal and noise spectra will not over- 

lap significantly.   When white noise is present, only that part of the noise 

aäa&Stimäimm 
 mmm -— 
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spectrum which falls outside the message bandwidth can be removed by filter- 

ing.   Remember, however, that the power in the white noise spectrum is spread 

over its entire bandwidth, which is much wider than the signal bandwidth. 

Therefore, the noise power not removed by filtering will be relatively small in 

magnitude.   Thus, the extraction of s(t) from d(t) ciai be viewed as a problem of 

frequency selection. 

2.1.1.3      Optimum filters 

Thus far we have seen how the problem of extracting information from noisy data 

can be viewed ir. the frequency domain as one of filtering out noise frequencies 

while passing that part of the total signal spectrum where the desired information 

lies.  Because there will in general be some overlap between the message and 

noise spectra, a perfect filter is usually beyond our reach.   The output of our 

filter will not be the message signal but rather an estimate of it, and we wish to 

construct a filter which will yield an optimal estimate.   The next problem then, 

is to choose a criterion of optimality. 

First, we define an error function E(t): 

E(t)= fSft> - S|t> |   , 

where    S(t) = the message signal, and 

S(t)    the estimate of S(t): the filter output. 

The two most often used criteria of optimality are;  (a) minimum mean squared 

error and (b) minimum maximum error (minimax).   When using approach (a), 
2 the filter is constructed such that the mean value of E (t) is minimized,   m ap- 

proach (b), the maximum value that E(t) can assume is minimized.   Each has 

its advantages and disadvantages.   The minimum mean squared error criteria 

will produce a filter with the smallest possible average error, but theoretically 

it may allow occasional relatively large deviations.   On the other hand, use of 

the minimax criterion assures that E(t) will always be kept within known bounds. 
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Howcvcr, the average error will be larger than that of a minimum mean squared 

error filter. 

The choice of an optimality criterion depends on the problem at hand.   For this 

problem the minimum mean squared error criterion was chosen, which results 

in a so-called matched filter.   The matched filter is optimal in that it both maxi- 

mized the output signal to noise ratio and can also be shown to be a maximum 

likelihood receiver.   For these reasons it is a very important concept. 

Let us define (without derivation) a matched filter fur detecting a signal S(t) 

existing over the time interval 0 < t £ T in the presence of additive white - ise. 

The impulse response h(t) of the matched filter is given by 

h(t) - S(t - T)   . 

That is, it is the signal run backwards.   Thus, we see that the output of the filter 

at time T is just the maximum signal energy, so that the result is intuitively 

pleasing. 

Although not shown here, one can develop a matched filter for the case of non- 

white noise.   In this case the filter characteristics depend on both the signal and 

noise structures.   It basically is a function of the relation of the signal and noise 

frequency spectra where the filter will attempt to pass the signal band and reject 

the noise band as best as can be done. 

For the case of baseband signals in white noise (which is perhaps the most com- 

mon situation) a low pass filter with cutoff frequency determined by the signal 

bandwidth will closely approximate the results of the exactly matched filter.   In 

the case considered here, where systematic noise is present as well, it is also 

useful to modify the filter transfer function slightly in order to assure very low 

gain in the frequency ranges where the systematic noise occurs.   As will be 

shown, this is the approach which has been taken for reducing the AE data.   With 

this background in mind, we are now prepared to discuss the design of a filter for 

processing ♦elemetry data.   This is done in Appendix A. 

■B—M ■ ■ —    IJ^jmMmmimmKmmmmmm^mmmm^am^^mmimKmmmmi^mmmmmmmm^mmmmmmmmmmm^m^^g^ggtga^gU^g^ 
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The specific characteristics of the filters chosen to process the drag data for 

both despun and spinning modes are described in the next section. 

2.2    APPLICATION TO MESA DATA 

The MESA sensors have the capability of being commanded into any of three 

sensitivity ranges: 

Range 

A 

B 

C 

Full scale (g's) 
-3 8 x 10 

4 xlO 

2 x 10 

-4 

-5 

Range A was commanded for satellite thrust monitoring and was not used for 

density measurement.   Emphasis in this report will be given to data taken from 

sensors in range B, since most density data were taken in this range. 

2.2.1     Description of Sensed Accelerations 

In order to determine how to best apply the techniques described in Section 2.1 

and Appendix A to analyze MESA output data, let us first describe the in-flight 

accelerations sensed by the MESA instruments.   These may be divided into the 

following - accelerations due to:  (1) atmospheric drag,   (2) satellite nutation, 

(3) momentum wheel rotation,   (4) centripetal acceleration,   (5) MESA instru- 

ment bias, and  (6) other sensor motions. 

2.2.1.1       Despun orbits 

Consider first the satellite despun.   In this configuration atmospheric drag infor- 

mation, assuming no wave motions, are sensed as zero frequency (DC) accelera- 

tions whose amplitudes vary between 10~   and 5 x 10~   g's depending upon 

satellite altitude.   Satellite nutation modifies the MESA output signal with a 

sinusoidal modulation whose frequency is 0.14 - 0.2 Hz and whose amplitude 

^^BH_aa^l^_^>^MMHiMi 
-''-■ ■ ■"■■:-*-=■■     '»»•■" 

B 
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-4 is about 1.8 x 10     g's per degree of nutation on the XY sensor.   Typically, 
-6 -5 nutation accelerations vary between 10    and 10    g's. 

Sensor outputs are further modified by noise due to the rotation of the satellite's 

momentum wheel assembly (MWA).   The momentum wheel rotation causes noise 

accelerations at high frequencies which are sensed by MESA.   However, due to 

the telemetry data sampling rate, the modulations for the most part appear at 

1.5 - 2.0 Hz.   This effect is known as aliasing and is discussed in Appendix A. 

The amplitude of the MWA noise acceleration is about 8 x 10    g's. 

— ft 
Instrument bias causes a DC output component whose amplitude is about 1.4 x 10~ 

g's.   In the despun case, centripetal accelerations sensed by MESA are negligible. 

Figure 1 displays a small segment of raw MESA data from the Xi sensor taken 

on orbit 2217 at an altitude of about 170 km.   Modulations on the output signal 

due to drag, nutation, MWA noise and instrument bias are shown. 

Figure 2 illustrates raw data for the full perigee pass of orbit 2217 from all three 

MESA sensors.   In order to attempt to measure density values at high satellite 

altitudes the YX sensor was in its most sensitive range (C-range).   This, how- 

ever, causes the YX output to saturate near perigee.   Hence, for this discussion, 

we will consider only the XY sensor (B-range).   Results of a power spectrum 
I 

analysis of the XY sensor data are displayed in Figure 3 showing increased power 

due to  (a) atmospheric drag at DC, and  (b) momentum wheel and nutation noise 

at 1.95 Hz and 0.156 Hz, respectively.   Base line data are displayed at the rela- 

tive white noise level. 
-■ 

SL 
I 
k. 
i It is essential that the filter used to reduce these data have near 100% response 

at low frequencies and minimum response at those frequencies where nutation 

and momentum wheel noise appear; that is, that filter side-lobes be kept to a 

minimum.   Figure 4 illustrates the filter chosen to accomplish these requirements. 
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Figure 3.   Power Spectrum Analysis 
Orbit 2217      Day 74180 
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Figure 4.   Filter   '15-10'  Response Curve 
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The filter is designated "15 - 10" because it is a low pass filter whose response 

is near 100% from DC to 15 seconds and is minimal from 10 seconds to . 5 sec- 

onds. 

Since the "15 - 10" filter chosen allows DC components to remain in the data, 
what remains after filtering are:  (a) drag accelerations and (b) instrument bias. 
Bias values are removed by considering the filtered output only in those regions 

where atmospheric drag is negligible, that is, at high altitudes.   Once bias 
values are determined, they are subtracted from the filtered output and the re- 
maining values are due to atmospheric drag.   Figure 5 displays MESA drag 
data from orbit 2217 after filtering has been done.   Comparison of this with the 

raw outputs of Figure 2 illustrates the results of digital filtering MSSÄ data 
taken on a typical despun orbit. 

Atmospheric density is linearly related to drag by the following equation: 

2MAD 

CDav2 

where       p = atmospheric density, 
M = satellite mass, 

AD »total drag acceleration, 
CQ = drag coefficient, 

a = satellite presentation area, 
v = satellite velocity. 

Final density values for orbi" 2217 are shown in r'igure 6. 

The "15 - 10* tiiter allows variations of atmospheric drag at frequencies lower 
than 0.067 Hi to "p\s* through" the filter, and yet noise at higher frequencies 
are eliminated.   Th s is essential if density variations due to magnetic storms, 
for instance, are to be studied.   Figure 7 illustrates this point.   Density structure 

is clearly seen for orbit 2283 when the magnetic activity index, Kp, was 5+. 
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As a footnote, we have found that when the YX sensor is in its most sensitive 

range (C-range), noise accelerations are sensed at a frequency of about 0.067 

Hz due to motions of other sensors.   In this case, in order to separate these 

accelerations from the drag information, a "33 - 20" filter was used.   The 

response curve of this filter is similar to the one shown in Figure 4. 

2.2.1.2      Spinning orbits 

We now consider the case when the satellite is spinning, nominally at 4 rpm. 

In this configuration, although atmospheric drag information would normally 

appear at low frequencies (near OC) the satellite spinning causes the drag 

measurements to be "chopped" at the spinning rate. Mathematically, this is 

equivalent to multiplying the measured drag signal by a sine wave at the spin 

frequency. Equivalently, the power spectrum of the drag signal is shifted in 

frequency to the spin frequency.   This is illustrated below: 

drag signal drag spectrum 

time DC 
frequency 

satellite spin signal spectrum 

■AAAAAAA."- 
measured 
drag signal 

spectrum 

-fs +fs 
frequency 

+fs 
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The amplitude of the drag information varies between 10~   and 5 x 10 ~   g's de- 

pending upon the satellite altitude,   m the spinning mode the spin axis nutation 
modifies the MESA output as a 0.1 - 0.11 Hz sinusoid.   As in the despun mode, 
nutation accelerations 
the MESA XY sensor. 

-4 nutation accelerations average about 1.8 x 10    g's, per degree of nutation on 

Momentum wheel related accelerations for the most part again appear as high 

frequency modulations atO.6-0.8Hz with amplitudes averaging about 8 x 10 
g's.   hi addition, accelerations due to movement of other sensors sometimes 

appear at frequencies lower than the spin frequency, typically about 0.033 Hz. 

Figure 8 displays typical output data from MESA on orbit 2437 when the satellite 

was spinning at 0.067 Hz.   Power spectrum analysis results from the XY sensor 
data are shown in Figure 9.   Drag information is displayed as increased power 
at the spin frequency, with nutation effects and momentum wheel noise indicated. 

To extract drag information from the total MESA signal in the spinning mode, a 
"band-pass1* filter was designed with the characteristics shown in Figure 10. 

This filter removes  (a) unwanted nutation accelerations which appear at about 

0.102 Hz,   (b) some motions of other instruments at about 0.033 Hz,   (c) bias 

and centripetal accelerations appearing near DC, and (d) momentum wheel noise 
at 0.6 - 0.8 Hz.   At the same time it is centered at 0.067 Hz to allow atmospheric 
drag information to pass. 

The filter parameters were chosen to ensure that the filter would describe the 
maximum variation in atmospheric drag by passing the drag signal information, 
centered at the satellite spin frequency, having a bandwidth within the filter band- 

width.   That is, the drag signal bandwidth is within .013 Hz of DC before modula- 

tion by the spin frequency. 

The spectrum of this drag signal after spin modulation will reside within the 

filter bandwidth.  At the same time all non-atmospheric noise accelerations at 
frequencies of less than 0.05 Hz and greater than 0.1 Hz will be removed by the 

filter. 
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Since DC components are removed from the data by the bandpass filter (as indi- 
cated by the response curve in Figure 10), instrument bias and centripetal 

accelerations are filtered out and hence need not be separately removed. 

Figure 11 displays MESA drag data from 2437 after filtering has been done. 
Comparison of this with the raw outputs of Figure 8 illustrates the results of 
digital filtering MESA data taken on a typical spinning orbit.   Final density 

values for this orbit are shown, in Figure 12. 
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APPENDIX A 

THE LEAST SQUARES APPROXIMATION FOR 

NON-RECURSIVE DIGITAL FILTERS 

(The following treatment is taken in part from Behannon and Ness (Reference [1]).) 

In general a numerical filter consists of a set of "weights" W, which determine 

the actual transfer function W(f) of the filter.   (The design of a numerical filter 

begins with establishing the shape of the data window in the frequency domain 

which will give the desired effect.)  Having specified the theoretical transfer 

function, the remainder of the problem consists of determining the weights W, 

in such a way that the actual transfer function, or frequency response, approxi- 

mates the desired one as well as possible.   A perfect low pass filter, for example, 

would leave unaltered all frequency components from f = 0 to the desired cutoff 

frequency f. and then would suppress all frequencies greater than f, .   The re- 

sponse of an actual numerical filter can only approximate this ideal behavior, 

with the accuracy of the approximation depending on the values of various design 

parameters. 

As in the simple smoothing process, a numerical filter is applied, such that 

N 
y0(t)= ^T w^t + kAt) . (i) 

k=-M 

The filtering is accomplished by "sliding" the filter along the data, applying it 

to M + 1 + N data points to produce the filtered equivalent of the data point which 

has been multiplied by WQ and then moving each weight to the next point in the 

series and repeating the application.   Repetition of the process until all the data 

in a given run have been covered produces a series of filtered data points which 

defines the output function 0(t).   Within the precision of the filter these points 

will trace out the input function I(t) with the unwanted high frequency components 

removed (if a low pass filter is being used). 

-26 - 
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As an illustration consider Oat the time domain representation of the smoothing 
process for a Turning mean filter is a "window" or square wave: 

f(t) 

(For the sake of completeness, a derivation of the frequency domain representa- 
tion of f(t) is given in Appendix B which demonstrates that a running mean filter 
is a form of a low pass filter.) 

If the process is applied a second time, the result is f(t) convolved with itself. 
This results in a triangle function: 

f(t) * f(t) 

A third application will result in three parabolic segments: 

f(t) * f(t) * f(t) 

■ 
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It can be seen that as the smoothing process is applied repeatedly, the time do- 

main representation of the filter approaches a normal or Gaussian curve.   One 

would expect this result from the Central Limit. Theorem.   Note also that the 

spectrum of a Gaussian curve is a Gaussian curve as well.   Thus, the filter shape 

in the frequency domain will also be Gaussian. 

When experimental data are derived by discretely sampling some phenomenon at 

equally spaced intervals of time, the problem of aliasing may occur in which the 

sampling rate is low enough to confuse two or more frequencies in the data.   The 

net result is that they appear to be the same frequency.   To avoid this problem 

and hence to define a unique input function as described by a set of data points, 

one must be able to assume that the phenomenon studied is spectrally limited to 

the range !f|<f,, where f = f / 2, f being the sampling frequency and f , being 

the cut-off or Nyquist frequency.   If such an assumption is valid, then the func- 

tion has been sampled frequently enough so that all significant frequency compo- 

nents are determinable.   This is a result of the sampling theorem of information 

theory (Reference (3)).   The sampling theorem states that if a function G(t) con- 

tains no frequencies higher than W cycles per second, then it is completely 

determined by giving its ordinates at a series of points spaced 1/2W seconds 

apart, the series extending throughout the entire time domain. 

The problem of filter design consists of determining the M + 1 + N weights W, 

such that the transfer function of the filter as defined by 

W(P) =  Y  WR e1*?  , 
k--M 

where p ~ f/f   approximates optimally, in the least squares sense, the desired 

transfer function.   The transfer function for a perfect filter may be written in 

the form 

T(p) > G(p) JW> 

 ■>■• -■.■-■-i--^*' 
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<p(p) being the phase shift.   We shall require that the mean square deviation be- 
tween T(p) and W(p) over a specified interval -p' to ■»*,', given by 

I=wj' 'T<p>-w<p)l2dp 

be minimized by proper choice of the M + 1 + N weights W..   It can be shown 
that this leads to (for the case of an Ideal Low Pass Filter) 

Wo = C* = 
p 

p 
'o 

and for k / 0 

w   _ siniikp 

The preceding equations may be used to compute low pass filter weights for 
sharp cutoff, but they lead to an approximation of the ideal transfer function 
which exhibits a large overshoot for values of p slightly smaller or greater than 
P.   This is a manifestation of the Gibbs phenomenon discussed in most works on 
Fourier analysis.   This phenomenon occurs near a discontinuity in a function 
which is being approximated by a finite series of size N.  As N increases, the 
position at which the maximum occurs moves nearer to the point of discontinuity, 
but the value of the overshoot amplitude is independent of N.   In approximating a 
perfect low pass filter transfer function.   The deviations from the theoretical 
values near the cutoff frequency are usually much larger than can be allowed. 

To avoid the sharp cutoff overshoot, instead of leaking the function zero for all 
values of p, it can be continued by a sine function which has the same value and 
the same derivative at p + P as the transfer function and, together with its de- 
rivative, becomes zero for a specified value of p.  Instead of using p directly, 
however, it is more convenient to use a parameter h , of magnitude correspond- 

IT 

ing to the change in p during 1/4 cycle of the sine termination function.  If the 
ratio of the change in p to his included in the argument of the sine function, it 
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forces both the termination function and its derivative to have the necessary 

values at their end points.   The geometry of the sine termination is shown in 

Figure Al. 

Figure Al - Geometry of the sine termination function 
A(p) which is used to provide smoother cutoff for low 
pass filter frequency responses (Figure taken from 
reference (1).). 

To design a filter with a sine termination, b must be as small as possible but 

such that the actual frequency response of the filter does not depart from the 

theoretical response by more than a permissible tolerance.   (As h approaches 

zero, the filter approaches a sharp cutoff filter.)   In Figure A2 we see the 
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improvement offered by sine-terminated filters over sharp cutoff filters de- 
signed for the same cutoff frequencies and with the same number of weights. 

o 

-0.1 

N = 20 

SINE-TERMINATION 

tt.1 I.IWIJ<'I|.< 

SHARP CUTOFF 
_j i,    —I l 1 1 

0     0.1    0.2    0.3   0.4    0.5   0.6   0.7   0.«   0.9    1. 

FREQUENCY NORMALIZATION PARAMETER, p * f/f, 

1.' 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

-0.1 

a*£tyj| 

N = 50 

SINE-TERMINATION 

• *     .... 
I)^M<M«M^>V^W ■»** ■■■ 

;.,_ SHARP CUTOFF 

0     0.1    0.2   0.3   0.4    0.5    0.6   0.7   O.'i   0.9   1.0 

FREQUENCY NORMALIZATION PARAMETER, p ' f/fc 

Figure A2 - Marked contrast between sharp cutoff and sine-terminated approxi- 
mations to an ideal filter with low cutoff at p = 0.2 is illustrated by the frequency 
response of two filters with N = 20 and N » 50, respectively.   The approximation 
is improved by use of the larger filter (Figure taken from reference (1).). 

The weights for a sine-terminated filter can be shown to be Wfi = P + h, and 

W, cos ffkh 

1 - 4k2h2 

Ksinirk(P +h)1 
irk        J 

One further correction may be added to the weights in order to normalize the 

gain to 1.0 at p = 0. Let the value of the k    weight be designated by L.. Then 

_ 
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A - 1 - I L •"£"•) 
and the corrected weight is given by 

W,_ = L, + H. + 2N + 1 

Once the weights have been computed, the gain or frequency response may be 

found from 

N r IN 

w(p)=w0+2 y^ wkcos ffkp 

The above results are easily extended to the design of bandpass filters.   That is, 

one obtains a bandpass filter (centered at frequency q) with the shape of a given 

low pass filter by simply shifting the low pass filter spectrum by + q, as illus- 

trated below. 

Low pass filter 

Band pass filter 

Mathematically, this is done by multiplying the low pass filter time response as 

shown here. 

'—■' ■ -WS 
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= 2cos 2flqt W^t)   . 

Thus, the K   weight of the bandpass filter centered at f = q is tfven in terms of 
the low pass weights by 

<-*"*{*$)<■ 



APPENDIX B 

DERIVATION OF SQUARE WINDOW TRANSFER FUNCTION 

f(h) = noisy input signal 

g(h) = smoothed output signal 

h     = space between data points 

N    = number of data points to be averaged. 

NOTE:   Two assumptions are made about f(h): 

(1) f(h) has a Fourier transform F(w) 

(2) F(w) has no DC component, i.e., F(0) = 0, 

-     /-h+(NAh/2) 
8<h>=Nkl f(K)dk NAH-(NAh/2) 

.    (/-h+(NAh/2) rh-(NAh/2) ) 

■nkjL      f(k,dk-L     f(k)dk| 
^{a(h)-b(h)} 

/•h+(NAh/2) r» r .       - 
a(h)=J f(k)dk=J    f(k)u fh+£f2j-k|dk  , 

where u(h) is the unit step function, thus 

a(h)=f(h)*u(h+£Ä , 

where "*" signifies convolution. 

-34 - 
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A(w) = F(w) [± + „6(w)| eJw<NAh/2> 

^w(HAh/2) 
= F(w) 

= F(w) 

jw 

1^ 

+ 1TF(0) 6(w) e
jw<NAh/2> 

from assumption 2 above.   Similarly, 

B(w) = F(w) e -jw(NÄh/2) 

^%       ^J = F,B,1^ 
H(w) 

sin/wNAh\ 

F(w)        /WNAh 
ra 

Substituting 2irf = w 

utr\ - sin yfNAh 
H(f)'    irfNAh     ; 

H(f) = sine (HAM)  . 
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